Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33.993
Filter
1.
Antonie Van Leeuwenhoek ; 117(1): 63, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561518

ABSTRACT

Phage resistance is crucial for lactic acid bacteria in the dairy industry. However, identifying all phages affecting these bacteria is challenging. CRISPR-Cas systems offer a resistance mechanism developed by bacteria and archaea against phages and plasmids. In this study, 11 S. thermophilus strains from traditional yogurts underwent analysis using next-generation sequencing (NGS) and bioinformatics tools. Initial characterization involved molecular ribotyping. Bioinformatics analysis of the NGS raw data revealed that all 11 strains possessed at least one CRISPR type. A total of 21 CRISPR loci were identified, belonging to CRISPR types II-A, II-C, and III-A, including 13 Type II-A, 1 Type III-C, and 7 Type III-A CRISPR types. By analyzing spacer sequences in S. thermophilus bacterial genomes and matching them with phage/plasmid genomes, notable strains emerged. SY9 showed prominence with 132 phage matches and 30 plasmid matches, followed by SY12 with 35 phage matches and 25 plasmid matches, and SY18 with 49 phage matches and 13 plasmid matches. These findings indicate the potential of S. thermophilus strains in phage/plasmid resistance for selecting starter cultures, ultimately improving the quality and quantity of dairy products. Nevertheless, further research is required to validate these results and explore the practical applications of this approach.


Subject(s)
Bacteriophages , Streptococcus thermophilus , Streptococcus thermophilus/genetics , CRISPR-Cas Systems , Yogurt , Bacteriophages/genetics , Plasmids/genetics
2.
Wei Sheng Yan Jiu ; 53(2): 243-256, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38604960

ABSTRACT

OBJECTIVE: To understand the prevalence, genetic characteristics and drug resistance features of Salmonella Kentucky ST314 in Shenzhen. METHODS: Whole genome sequencing of 14 strains of Salmonella Kentucky ST314 collected from 2010-2021 by the Foodborne Disease Surveillance Network of Shenzhen Center for Disease Control and Prevention for phylogenetic evolutionary analysis, drug resistance gene and plasmid detection; drug susceptibility experiments were performed by micro-broth dilution method. RESULTS: A total of 57 strains of Salmonella Kentucky were collected from the foodborne disease surveillance network, 14 of which were ST314. The Shenzhen isolates were clustered with isolates from Southeast Asian countries such as Vietnam and Thailand on clade 314.2, and the single nucleotide polymorphism distance between local strains in Shenzhen was large, indicating dissemination. In this study, a total of 17 drug resistance genes/mutations in 9 categories were detected in the genome of Salmonella Kentucky ST314, carrying 3 extended spectrum beta-lactamases(ESBLs), including bla_(CTX-M-24)(14.3%, 2/14), bla_(CTX-M-55)(7.1%, 1/14), and bla_(CTX-M-130)(14.3%, 2/14), all located on plasmids. Regarding quinolone resistance factors, two plasmid-mediated quinolone resistance(PMQR) genes were identified in the genome: qnrB6(71.4%, 10/14) and aac(6')Ib-cr(78.6%, 11/14), a quinolone resistance quinolone resistance-determining regions(QRDR) mutation T57 S(100%, 14/14). The multi-drug resistance rate of Salmonella Kentucky ST314 in Shenzhen was 92.86%(13/14)with the highest rate of resistance to tetracycline and cotrimoxazole(100%, 14/14), followed by chloramphenicol(92.86%, 13/14), cefotaxime and ampicillin(78.57%, 11/14), ciprofloxacin and nalidixic acid(71.43%, 10/14), and ampicillin-sulbactam had the lowest resistance rate(21.43%, 3/14). CONCLUSION: ST314 is the second most prevalent ST type among Salmonella Kentucky in Shenzhen, mainly isolated from food, especially poultry; phylogenetic analysis suggests that ST314 is a disseminated infection and the genome shows a highly genetically conserved phenotype. Drug resistance of Salmonella Kentucky ST314 is very serious, especially QRDR mutation, PMQR gene co-mediated quinolone resistance and plasmid-mediated cephalosporin resistance are prominent and deserve extensive attention.


Subject(s)
Foodborne Diseases , Quinolones , Humans , Kentucky , Phylogeny , Salmonella , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Drug Resistance , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , beta-Lactamases/genetics
3.
Environ Sci Technol ; 58(15): 6793-6803, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38574343

ABSTRACT

Current disinfection processes pose an emerging environmental risk due to the ineffective removal of antibiotic-resistant bacteria, especially disinfection residual bacteria (DRB) carrying multidrug-resistant plasmids (MRPs). However, the characteristics of DRB-carried MRPs are poorly understood. In this study, qPCR analysis reveals that the total absolute abundance of four plasmids in postdisinfection effluent decreases by 1.15 log units, while their relative abundance increases by 0.11 copies/cell compared to investigated wastewater treatment plant (WWTP) influent. We obtain three distinctive DRB-carried MRPs (pWWTP-01-03) from postdisinfection effluent, each carrying 9-11 antibiotic-resistant genes (ARGs). pWWTP-01 contains all 11 ARGs within an ∼25 Kbp chimeric genomic island showing strong patterns of recombination with MRPs from foodborne outbreaks and hospitals. Antibiotic-, disinfectant-, and heavy-metal-resistant genes on the same plasmid underscore the potential roles of disinfectants and heavy metals in the coselection of ARGs. Additionally, pWWTP-02 harbors an adhesin-type virulence operon, implying risks of both antibiotic resistance and pathogenicity upon entering environments. Furthermore, some MRPs from DRB are capable of transferring and could confer selective advantages to recipients under environmentally relevant antibiotic pressure. Overall, this study advances our understanding of DRB-carried MRPs and highlights the imminent need to monitor and control wastewater MRPs for environmental security.


Subject(s)
Disinfectants , Water Purification , Disinfection , Genes, Bacterial , Bacteria/genetics , Anti-Bacterial Agents/pharmacology , Disinfectants/pharmacology , Plasmids/genetics
4.
Semin Cell Dev Biol ; 161-162: 31-41, 2024.
Article in English | MEDLINE | ID: mdl-38598944

ABSTRACT

Antagonistic coevolution, arising from genetic conflict, can drive rapid evolution and biological innovation. Conflict can arise both between organisms and within genomes. This review focuses on budding yeasts as a model system for exploring intra- and inter-genomic genetic conflict, highlighting in particular the 2-micron (2µ) plasmid as a model selfish element. The 2µ is found widely in laboratory strains and industrial isolates of Saccharomyces cerevisiae and has long been known to cause host fitness defects. Nevertheless, the plasmid is frequently ignored in the context of genetic, fitness, and evolution studies. Here, I make a case for further exploring the evolutionary impact of the 2µ plasmid as well as other selfish elements of budding yeasts, discuss recent advances, and, finally, future directions for the field.


Subject(s)
Saccharomycetales , Saccharomycetales/genetics , Saccharomyces cerevisiae/genetics , Plasmids/genetics , Genome
5.
Biochem Biophys Res Commun ; 710: 149890, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38608491

ABSTRACT

Low level expression in Escherichia coli of the RecA protein from the radiation resistant bacterium Deinococcus radiodurans protects a RecA deficient strain of E. coli from UV-A irradiation by up to ∼160% over basal UV-A resistance. The protection effect is inverse protein dose dependent: increasing the expression level of the D. radiodurans RecA (DrRecA) protein decreases the protection factor. This inverse protein dose dependence effect helps resolve previously conflicting reports of whether DrRecA expression is protective or toxic for E. coli. In contrast to the D. radiodurans protein effect, conspecific plasmid expression of E. coli RecA protein in RecA deficient E. coli is consistently protective over several protein expression levels, as well as consistently more protective to higher levels of UV-A exposure than that provided by the D. radiodurans protein. The results indicate that plasmid expression of D. radiodurans RecA can modestly enhance the UV resistance of living E. coli, but that the heterospecific protein shifts from protective to toxic as expression is increased.


Subject(s)
Deinococcus , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Deinococcus/genetics , Deinococcus/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Plasmids/genetics , Ultraviolet Rays , DNA Repair , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
6.
BMC Genomics ; 25(1): 324, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561675

ABSTRACT

Lactococcus lactis is widely applied by the dairy industry for the fermentation of milk into products such as cheese. Adaptation of L. lactis to the dairy environment often depends on functions encoded by mobile genetic elements (MGEs) such as plasmids. Other L. lactis MGEs that contribute to industrially relevant traits like antimicrobial production and carbohydrate utilization capacities belong to the integrative conjugative elements (ICE). Here we investigate the prevalence of ICEs in L. lactis using an automated search engine that detects colocalized, ICE-associated core-functions (involved in conjugation or mobilization) in lactococcal genomes. This approach enabled the detection of 36 candidate-ICEs in 69 L. lactis genomes. By phylogenetic analysis of conserved protein functions encoded in all lactococcal ICEs, these 36 ICEs could be classified in three main ICE-families that encompass 7 distinguishable ICE-integrases and are characterized by apparent modular-exchangeability and plasticity. Finally, we demonstrate that phylogenetic analysis of the conjugation-associated VirB4 ATPase function differentiates ICE- and plasmid-derived conjugation systems, indicating that conjugal transfer of lactococcal ICEs and plasmids involves genetically distinct machineries. Our genomic analysis and sequence-based classification of lactococcal ICEs creates a comprehensive overview of the conserved functional repertoires encoded by this family of MGEs in L. lactis, which can facilitate the future exploitation of the functional traits they encode by ICE mobilization to appropriate starter culture strains.


Subject(s)
Lactococcus lactis , Lactococcus lactis/genetics , Phylogeny , Plasmids/genetics , Proteins/metabolism , Genome , Conjugation, Genetic , DNA Transposable Elements
7.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38612765

ABSTRACT

The mechanisms and consequences of gene regulation by Hfq on trans-encoded small RNAs (sRNAs) have been well studied and documented. Recent employment of Genomic SELEX to search for Hfq-binding motifs has indicated that Hfq might frequently regulate gene expression controlled by cis-antisense RNAs. Here, we use the classic ColE1 plasmid antisense RNA-based regulation model (i.e., RNA I) to study the role of Hfq in controlling antisense regulatory functions. We show that Hfq exhibits a high binding affinity for RNA I and that binding limits RNase E cleavage, thereby stabilizing RNA I and reducing the plasmid copy number. Full-length RNA I displays a binding affinity for Hfq in the sub-micromolar range. In vivo overexpression of Hfq prolongs RNA I stability and reduces the ColE1 plasmid copy number, whereas deletion of hfq reduces RNA I stability and increases the plasmid copy number. RNA I predominantly binds to the proximal face of Hfq and exhibits competitive ability against a chromosome-borne proximal face-bound sRNA (DsrA) for Hfq binding. Through its strong promoter and high gene dosage features, plasmid-encoded antisense RNA I results in high RNA I expression, so it may antagonize the effects of trans-encoded RNAs in controlling target gene expression.


Subject(s)
DNA Copy Number Variations , Endoribonucleases , RNA, Antisense , RNA, Antisense/genetics , Plasmids/genetics , RNA Stability
8.
Nat Commun ; 15(1): 3147, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605009

ABSTRACT

Plasmids are pivotal in driving bacterial evolution through horizontal gene transfer. Here, we investigated 3467 human gut microbiome samples across continents and disease states, analyzing 11,086 plasmids. Our analyses reveal that plasmid dispersal is predominantly stochastic, indicating neutral processes as the primary driver of their wide distribution. We find that only 20-25% of plasmid DNA is being selected in various disease states, constraining its distribution across hosts. Selective pressures shape specific plasmid segments with distinct ecological functions, influenced by plasmid mobilization lifestyle, antibiotic usage, and inflammatory gut diseases. Notably, these elements are more commonly shared within groups of individuals with similar health conditions, such as Inflammatory Bowel Disease (IBD), regardless of geographic location across continents. These segments contain essential genes such as iron transport mechanisms- a distinctive gut signature of IBD that impacts the severity of inflammation. Our findings shed light on mechanisms driving plasmid dispersal and selection in the human gut, highlighting their role as carriers of vital gene pools impacting bacterial hosts and ecosystem dynamics.


Subject(s)
Ecosystem , Inflammatory Bowel Diseases , Humans , Plasmids/genetics , Bacteria/genetics , Anti-Bacterial Agents , Gene Transfer, Horizontal , Inflammatory Bowel Diseases/genetics
9.
Proc Natl Acad Sci U S A ; 121(18): e2319205121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652748

ABSTRACT

The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.


Subject(s)
Escherichia coli , Plasmids , Plasmids/metabolism , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Chromosomes, Bacterial/metabolism , Chromosomes, Bacterial/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Chromosome Segregation , DNA Primase/metabolism , DNA Primase/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
10.
J Hazard Mater ; 470: 134201, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38579585

ABSTRACT

From the onset of coronavirus disease (COVID-19) pandemic, there are concerns regarding the disease spread and environmental pollution of biohazard since studies on genetic engineering flourish and numerous genetic materials were used such as the nucleic acid test of the severe acute respiratory syndrome coronavirus (SARS-CoV-2). In this work, we studied genetic material pollution in an institute during a development cycle of plasmid, one of typical genetic materials, with typical laboratory settings. The pollution source, transmission routes, and pollution levels in laboratory environment were examined. The Real-Time quantitative- Polymerase Chain Reaction results of all environmental mediums (surface, aerosol, and liquid) showed that a targeted DNA segment occurred along with routine experimental operations. Among the 79 surface and air samples collected in the genetic material operation, half of the environment samples (38 of 79) are positive for nucleic acid pollution. Persistent nucleic acid contaminations were observed in all tested laboratories and spread in the public area (hallway). The highest concentration for liquid and surface samples were 1.92 × 108 copies/uL and 5.22 × 107 copies/cm2, respectively. Significant amounts of the targeted gene (with a mean value of 74 copies/L) were detected in the indoor air of laboratories utilizing centrifuge devices, shaking tables, and cell homogenizers. Spills and improper disposal of plasmid products were primary sources of pollution. The importance of establishing designated experimental zones, employing advanced biosafety cabinets, and implementing highly efficient cleaning systems in laboratories with lower biosafety levels is underscored. SYNOPSIS: STATEMENT. Persistent environmental pollutions of genetic materials are introduced by typical experiments in laboratories with low biosafety level.


Subject(s)
Laboratories , Humans , SARS-CoV-2/genetics , Plasmids/genetics , COVID-19/transmission , Environmental Pollution/analysis , Environmental Monitoring
11.
Emerg Microbes Infect ; 13(1): 2339942, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38584569

ABSTRACT

To investigate the epidemiology of ST20 carbapenem-resistant Klebsiella pneumoniae (CRKP) in China, and further explore the genomic characteristics of blaIMP-4 and blaNDM-1 coharboring isolates and plasmid contributions to resistance and fitness. Seven ST20 CRKP isolates were collected nationwide, and antimicrobial susceptibility testing was performed. Antimicrobial resistance genes, virulence genes, and plasmid replicons were identified via whole-genome sequencing, and clonality assessed via core-genome multilocus sequence typing. Furthermore, we found four dual-metallo-ß-lactamases (MBL)-harbouring isolates, the gene location was detected by Southern blotting, and plasmid location analysis showed that blaIMP-4 was located on a separate plasmid, a self-conjugative fusion plasmid, or the bacterial chromosome. These isolates were subjected to long-read sequencing, the presence of blaIMP-4 in different locations was identified by genomic comparison, and transposon units were detected via inverse PCR. We subsequently found that blaIMP-4 on the fusion plasmid and bacterial chromosome was formed via intact plasmid recombination by the IS26 and ltrA, respectively, and the circular transposon unit was related to cointegration, however, blaIMP-4 in different locations did not affect the gene stability. The blaNDM-1-harbouring plasmid contributed to the increased resistance to ß-lactams and shortened survival lag time which was revealed in plasmid cured isolates. In summary, the K. pneumoniae ST20 clone is a high-risk resistant clone. With the use of ceftazidime/avibactam, MBL-positive isolates, especially dual-MBL-harbouring isolates, should be given additional attention.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , beta-Lactamases/genetics , beta-Lactamases/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Multilocus Sequence Typing , Microbial Sensitivity Tests
12.
PLoS Pathog ; 20(4): e1012122, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558079

ABSTRACT

Lyme disease is a tick-borne infection caused by the spirochete Borrelia (Borreliella) burgdorferi. Borrelia species have highly fragmented genomes composed of a linear chromosome and a constellation of linear and circular plasmids some of which are required throughout the enzootic cycle. Included in this plasmid repertoire by almost all Lyme disease spirochetes are the 32-kb circular plasmid cp32 prophages that are capable of lytic replication to produce infectious virions called ϕBB-1. While the B. burgdorferi genome contains evidence of horizontal transfer, the mechanisms of gene transfer between strains remain unclear. While we know that ϕBB-1 transduces cp32 and shuttle vector DNA during in vitro cultivation, the extent of ϕBB-1 DNA transfer is not clear. Herein, we use proteomics and long-read sequencing to further characterize ϕBB-1 virions. Our studies identified the cp32 pac region and revealed that ϕBB-1 packages linear cp32s via a headful mechanism with preferential packaging of plasmids containing the cp32 pac region. Additionally, we find ϕBB-1 packages fragments of the linear chromosome and full-length plasmids including lp54, cp26, and others. Furthermore, sequencing of ϕBB-1 packaged DNA allowed us to resolve the covalently closed hairpin telomeres for the linear B. burgdorferi chromosome and most linear plasmids in strain CA-11.2A. Collectively, our results shed light on the biology of the ubiquitous ϕBB-1 phage and further implicates ϕBB-1 in the generalized transduction of diverse genes and the maintenance of genetic diversity in Lyme disease spirochetes.


Subject(s)
Bacteriophages , Borrelia burgdorferi , Lyme Disease , Humans , Borrelia burgdorferi/genetics , Bacteriophages/genetics , Plasmids/genetics , Lyme Disease/genetics , Genomics , DNA
13.
Microb Cell Fact ; 23(1): 116, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643119

ABSTRACT

BACKGROUND: Most recombinant Komagataella phaffii (Pichia pastoris) strains for protein production are generated by genomic integration of expression cassettes. The clonal variability in gene copy numbers, integration loci and consequently product titers limit the aptitude for high throughput applications in drug discovery, enzyme engineering or most comparative analyses of genetic elements such as promoters or secretion signals. Circular episomal plasmids with an autonomously replicating sequence (ARS), an alternative which would alleviate some of these limitations, are inherently unstable in K. phaffii. Permanent selection pressure, mostly enabled by antibiotic resistance or auxotrophy markers, is crucial for plasmid maintenance and hardly scalable for production. The establishment and use of extrachromosomal ARS plasmids with key genes of the glycerol metabolism (glycerol kinase 1, GUT1, and triosephosphate isomerase 1, TPI1) as selection markers was investigated to obtain a system with high transformation rates that can be directly used for scalable production processes in lab scale bioreactors. RESULTS: In micro-scale deep-well plate experiments, ARS plasmids employing the Ashbya gossypii TEF1 (transcription elongation factor 1) promoter to regulate transcription of the marker gene were found to deliver high transformation efficiencies and the best performances with the reporter protein (CalB, lipase B of Candida antarctica) for both, the GUT1- and TPI1-based, marker systems. The GUT1 marker-bearing strain surpassed the reference strain with integrated expression cassette by 46% upon re-evaluation in shake flask cultures regarding CalB production, while the TPI1 system was slightly less productive compared to the control. In 5 L bioreactor methanol-free fed-batch cultivations, the episomal production system employing the GUT1 marker led to 100% increased CalB activity in the culture supernatant compared to integration construct. CONCLUSIONS: For the first time, a scalable and methanol-independent expression system for recombinant protein production for K. phaffii using episomal expression vectors was demonstrated. Expression of the GUT1 selection marker gene of the new ARS plasmids was refined by employing the TEF1 promoter of A. gossypii. Additionally, the antibiotic-free marker toolbox for K. phaffii was expanded by the TPI1 marker system, which proved to be similarly suited for the use in episomal plasmids as well as integrative expression constructs for the purpose of recombinant protein production.


Subject(s)
Pichia , Saccharomycetales , Pichia/metabolism , Carbon/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Recombinant Proteins , Plasmids/genetics
14.
Euro Surveill ; 29(15)2024 Apr.
Article in English | MEDLINE | ID: mdl-38606571

ABSTRACT

BackgroundCarbapenemase-producing Enterobacterales are a public health threat worldwide and OXA-48 is the most prevalent carbapenemase in Germany and western Europe. However, the molecular epidemiology of OXA-48 in species other than Escherichia coli and Klebsiella pneumoniae remains poorly understood.AimTo analyse the molecular epidemiology of OXA-48 and OXA-48-like carbapenemases in Citrobacter species (spp.) in Germany between 2011 and 2022.MethodsData of 26,822 Enterobacterales isolates sent to the National Reference Centre (NRC) for Gram-negative bacteria were evaluated. Ninety-one Citrobacter isolates from 40 German hospitals harbouring bla OXA-48/OXA-48­like were analysed by whole genome sequencing and conjugation experiments.ResultsThe frequency of OXA-48 in Citrobacter freundii (CF) has increased steadily since 2011 and is now the most prevalent carbapenemase in this species in Germany. Among 91 in-depth analysed Citrobacter spp. isolates, CF (n = 73) and C. koseri (n = 8) were the most common species and OXA-48 was the most common variant (n = 77), followed by OXA-162 (n = 11) and OXA­181 (n = 3). Forty percent of the isolates belonged to only two sequence types (ST19 and ST22), while most other STs were singletons. The plasmids harbouring bla OXA­48 and bla OXA-162 belonged to the plasmid types IncL (n = 85) or IncF (n = 3), and plasmids harbouring bla OXA­181 to IncX3 (n = 3). Three IncL plasmid clusters (57/85 IncL plasmids) were identified, which were highly transferable in contrast to sporadic plasmids.ConclusionIn CF in Germany, OXA-48 is the predominant carbapenemase. Dissemination is likely due to distinct highly transmissible plasmids harbouring bla OXA­48 or bla OXA-48-like and the spread of the high-risk clonal lineages ST19 and ST22.


Subject(s)
Bacterial Proteins , Citrobacter , Humans , Citrobacter/genetics , Bacterial Proteins/genetics , beta-Lactamases/genetics , Plasmids/genetics , Klebsiella pneumoniae/genetics , Escherichia coli/genetics , Whole Genome Sequencing , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
15.
J Agric Food Chem ; 72(15): 8693-8703, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38574273

ABSTRACT

Ovalbumin (OVA) is the principal protein constituent of eggs. As an alternative to eggs, cell-cultured OVA can reduce the environmental impact of global warming and land use. Escherichia coli Nissle 1917 (EcN), a probiotic with specific endogenous cryptic plasmids that stably exist in cells without the addition of antibiotics, was chosen as the host for the efficient heterologous expression of the OVA. OVA yield reached 20 mg·L-1 in shake flasks using the OVA expression cassette containing a tac promoter (Ptac) upstream of the OVA-coding sequences on the endogenous plasmid pMUT2. Subsequently, we improved the level of the expression of the OVA by employing a dual promoter (PP5 combined with Ptac via a sigma factor binding site 24) and ribosome binding site (RBS) substitution. These enhancements increased the level of production of OVA in shake flasks to 30 and 42 mg·L-1, respectively. OVA by EcNP-P28 harboring plasmid L28 equipped with both dual promoter and the strong RBS8 reached 3.70 g·L-1 in a 3 L bioreactor. Recombinant OVA and natural OVA showed similar biochemical characteristics, including secondary structure, isoelectric point, amino acid composition, and thermal stability. This is currently the highest OVA production reported among prokaryotes. We successfully constructed an antibiotic-free heterologous protein expression system for EcN.


Subject(s)
Escherichia coli , Probiotics , Escherichia coli/genetics , Escherichia coli/metabolism , Anti-Bacterial Agents/metabolism , Ovalbumin/genetics , Ovalbumin/metabolism , Plasmids/genetics
16.
Sci Rep ; 14(1): 8103, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582880

ABSTRACT

Antimicrobial resistance genes (ARG), such as extended-spectrum ß-lactamase (ESBL) and carbapenemase genes, are commonly carried on plasmids. Plasmids can transmit between bacteria, disseminate globally, and cause clinically important resistance. Therefore, targeting plasmids could reduce ARG prevalence, and restore the efficacy of existing antibiotics. Cobalt complexes possess diverse biological activities, including antimicrobial and anticancer properties. However, their effect on plasmid conjugation has not been explored yet. Here, we assessed the effect of four previously characterised bis(N-picolinamido)cobalt(II) complexes lacking antibacterial activity on plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Antimicrobial susceptibility testing of these cobalt complexes confirmed the lack of antibacterial activity in E. coli and K. pneumoniae. Liquid broth and solid agar conjugation assays were used to screen the activity of the complexes on four archetypical plasmids in E. coli J53. The cobalt complexes significantly reduced the conjugation of RP4, R6K, and R388 plasmids, but not pKM101, on solid agar in E. coli J53. Owing to their promising activity, the impact of cobalt complexes was tested on the conjugation of fluorescently tagged extended-spectrum ß-lactamase encoding pCTgfp plasmid in E. coli and carbapenemase encoding pKpQILgfp plasmid in K. pneumoniae, using flow cytometry. The complexes significantly reduced the conjugation of pKpQILgfp in K. pneumoniae but had no impact on pCTgfp conjugation in E. coli. The cobalt complexes did not have plasmid-curing activity, suggesting that they target conjugation rather than plasmid stability. To our knowledge, this is the first study to report reduced conjugation of clinically relevant plasmids with cobalt complexes. These cobalt complexes are not cytotoxic towards mammalian cells and are not antibacterial, therefore they could be optimised and employed as inhibitors of plasmid conjugation.


Subject(s)
Anti-Infective Agents , Klebsiella Infections , Animals , Agar , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , beta-Lactamases/genetics , Escherichia coli/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Mammals/genetics , Microbial Sensitivity Tests , Plasmids/genetics
17.
J Med Microbiol ; 73(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38629482

ABSTRACT

Introduction. The first hybrid resistance/virulence plasmid, combining elements from virulence plasmids described in hypervirulent types of Klebsiella pneumoniae with those from conjugative resistance plasmids, was described in an isolate of sequence type (ST) 147 from 2016. Subsequently, this type has been increasingly associated with these plasmids.Hypothesis or gap statement. The extent of carriage of hybrid virulence/resistance plasmids in nosocomial isolates of K. pneumoniae requires further investigation.Aim. To describe the occurrence of virulence/resistance plasmids among isolates of K. pneumoniae received by the UK reference laboratory, particularly among representatives of ST147, and to compare their sequences.Methodology. Isolates received by the laboratory during 2022 and the first half of 2023 (n=1278) were screened for virulence plasmids by PCR detection of rmpA/rmpA2 and typed by variable-number tandem repeat analysis. Twenty-nine representatives of ST147 (including a single-locus variant) from seven hospital laboratories were subjected to long-read nanopore sequencing using high-accuracy q20 chemistry to provide complete assemblies.Results. rmpA/rmpA2 were detected in 110 isolates, of which 59 belonged to hypervirulent K1-ST23, K2-ST86 and K2-ST65/375. Of the remainder, representatives of ST147 formed the largest group, with 22 rmpA/rmpA2-positive representatives (out of 47 isolates). Representatives were from 19 hospital laboratories, with rmpA/rmpA2-positive isolates from 10. Nanopore sequencing of 29 representatives of ST147 divided them into those with no virulence plasmid (n=12), those with non-New Delhi metallo-ß-lactamase (NDM) virulence plasmids (n=6) and those carrying bla NDM-5 (n=9) or bla NDM-1 (n=2) virulence plasmids. These plasmids were of IncFIB(pNDM-Mar)/IncHI1B(pNDM-MAR) replicon types. Most of the non-NDM virulence plasmids were highly similar to the originally described KpvST147L_NDM plasmid. Those carrying bla NDM-5 were highly similar to one another and to previously described plasmids in ST383 and carried an extensive array of resistance genes. Comparison of the fully assembled chromosomes indicated multiple introductions of ST147 in UK hospitals.Conclusion. This study highlights the high proportion of representatives of ST147 that carry IncFIB(pNDM-Mar)/IncHI1B(pNDM-MAR) hybrid resistance virulence plasmids. It is important to be aware of the high probability that representatives of this type carry these plasmids combining resistance and virulence determinants and of the consequent increased risk to patients.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Virulence/genetics , Klebsiella Infections/epidemiology , beta-Lactamases/genetics , Plasmids/genetics , Anti-Bacterial Agents
18.
Genome Med ; 16(1): 58, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637822

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is a major bacterial and opportunistic human pathogen, increasingly recognized as a healthcare burden globally. The convergence of resistance and virulence in K. pneumoniae strains has led to the formation of hypervirulent and multidrug-resistant strains with dual risk, limiting treatment options. K. pneumoniae clones are known to emerge locally and spread globally. Therefore, an understanding of the dynamics and evolution of the emerging strains in hospitals is warranted to prevent future outbreaks. METHODS: In this study, we conducted an in-depth genomic analysis on a large-scale collection of 328 multidrug-resistant (MDR) K. pneumoniae strains recovered from 239 patients from a single major hospital in the western coastal city of Jeddah in Saudi Arabia from 2014 through 2022. We employed a broad range of phylogenetic and phylodynamic methods to understand the evolution of the predominant clones on epidemiological time scales, virulence and resistance determinants, and their dynamics. We also integrated the genomic data with detailed electronic health record (EHR) data for the patients to understand the clinical implications of the resistance and virulence of different strains. RESULTS: We discovered a diverse population underlying the infections, with most strains belonging to Clonal Complex 14 (CC14) exhibiting dominance. Specifically, we observed the emergence and continuous expansion of strains belonging to the dominant ST2096 in the CC14 clade across hospital wards in recent years. These strains acquired resistance mutations against colistin and extended spectrum ß-lactamase (ESBL) and carbapenemase genes, namely blaOXA-48 and blaOXA-232, located on three distinct plasmids, on epidemiological time scales. Strains of ST2096 exhibited a high virulence level with the presence of the siderophore aerobactin (iuc) locus situated on the same mosaic plasmid as the ESBL gene. Integration of ST2096 with EHR data confirmed the significant link between colonization by ST2096 and the diagnosis of sepsis and elevated in-hospital mortality (p-value < 0.05). CONCLUSIONS: Overall, these results demonstrate the clinical significance of ST2096 clones and illustrate the rapid evolution of an emerging hypervirulent and MDR K. pneumoniae in a clinical setting.


Subject(s)
Klebsiella pneumoniae , Klebsiella , Humans , Klebsiella/genetics , Tertiary Care Centers , Phylogeny , Plasmids/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents
19.
Front Cell Infect Microbiol ; 14: 1289396, 2024.
Article in English | MEDLINE | ID: mdl-38655285

ABSTRACT

The global emergence of antimicrobial resistance to multiple antibiotics has recently become a significant concern. Gram-negative bacteria, known for their ability to acquire mobile genetic elements such as plasmids, represent one of the most hazardous microorganisms. This phenomenon poses a serious threat to public health. Notably, the significance of tigecycline, a member of the antibiotic group glycylcyclines and derivative of tetracyclines has increased. Tigecycline is one of the last-resort antimicrobial drugs used to treat complicated infections caused by multidrug-resistant (MDR) bacteria, extensively drug-resistant (XDR) bacteria or even pan-drug-resistant (PDR) bacteria. The primary mechanisms of tigecycline resistance include efflux pumps' overexpression, tet genes and outer membrane porins. Efflux pumps are crucial in conferring multi-drug resistance by expelling antibiotics (such as tigecycline by direct expelling) and decreasing their concentration to sub-toxic levels. This review discusses the problem of tigecycline resistance, and provides important information for understanding the existing molecular mechanisms of tigecycline resistance in Enterobacterales. The emergence and spread of pathogens resistant to last-resort therapeutic options stands as a major global healthcare concern, especially when microorganisms are already resistant to carbapenems and/or colistin.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Tigecycline , Tigecycline/pharmacology , Anti-Bacterial Agents/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/genetics , Humans , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Minocycline/analogs & derivatives , Minocycline/pharmacology , Microbial Sensitivity Tests , Plasmids/genetics , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology
20.
World J Microbiol Biotechnol ; 40(6): 177, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656467

ABSTRACT

During the COVID-19 pandemic, the occurrence of carbapenem-resistant Klebsiella pneumoniae increased in human clinical settings worldwide. Impacted by this increase, international high-risk clones harboring carbapenemase-encoding genes have been circulating in different sources, including the environment. The blaKPC gene is the most commonly disseminated carbapenemase-encoding gene worldwide, whose transmission is carried out by different mobile genetic elements. In this study, blaKPC-2-positive Klebsiella pneumoniae complex strains were isolated from different anthropogenically affected aquatic ecosystems and characterized using phenotypic, molecular, and genomic methods. K. pneumoniae complex strains exhibited multidrug-resistant and extensively drug-resistant profiles, spotlighting the resistance to carbapenems, ceftazidime-avibactam, colistin, and tigecycline, which are recognized as last-line antimicrobial treatment options. Molecular analysis showed the presence of several antimicrobial resistance, virulence, and metal tolerance genes. In-depth analysis showed that the blaKPC-2 gene was associated with three different Tn4401 isoforms (i.e., Tn4401a, Tn4401b, and Tn4401i) and NTEKPC elements. Different plasmid replicons were detected and a conjugative IncN-pST15 plasmid harboring the blaKPC-2 gene associated with Tn4401i was highlighted. K. pneumoniae complex strains belonging to international high-risk (e.g., ST11 and ST340) and unusual clones (e.g., ST323, ST526, and ST4216) previously linked to clinical settings. In this context, some clones were reported for the first time in the environmental sector. Therefore, these findings evidence the occurrence of carbapenemase-producing K. pneumoniae complex strains in aquatic ecosystems and contribute to the monitoring of carbapenem resistance worldwide.


Subject(s)
Anti-Bacterial Agents , Genetic Variation , Klebsiella pneumoniae , Microbial Sensitivity Tests , Plasmids , beta-Lactamases , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Humans , Klebsiella Infections/microbiology , Ecosystem , Carbapenems/pharmacology , Water Microbiology , DNA Transposable Elements
SELECTION OF CITATIONS
SEARCH DETAIL
...